Web Application Security
Front Range Unix Users’ Group

Ben Whaley

November 15, 2007



Agenda Summary

e Security Warm up

« Common input exploits

e Secure coding with input validation
e Self-assessment and testing

... if time permits ...
e Hot topics in application security



What is security?

e What is security?

e 3 risks and 3 priorities:
e Disclosure -> Confidentiality
e Corruption -> Integrity
o Unavailability -> Availability

e Multi-layered defense

« We have to deal with application and host
security



Open Web Application Security Project

« The OWASP guide is the de-facto authoritative resource for
web application security

« For example, the PCI DSS standard requires that
applications are developed according to OWASP

« Too “loose” to be called a standard, but still a wonderful
resource

o Lots of resources:
« OWASP Guide
Top 10 Lists
WebGoat training application
WebScarab
...and more!



Agenda Summary

e Security Warm up

« Common input exploits

e Secure coding with input validation
e Self-assessment and testing

e Hot topics in application security



Input Exploits

- External input to application may contain special
characters

« Various characters have special significance to the
database, or the web/application server, or perhaps the
0S

« Untrusted input can come from:
 URL parameters
 Form elements
« Cookies
- Database queries
« Other programs!

 AKA: Command injection



SQL Injection attacks: The Basics

« Four main types of attacks
« SQL manipulation
« Code Injection
* Function call injection
- Buffer overflows

« Most databases engines are susceptible to the first two
categories (MS SQL, MySQL , PostgreSQL, Oracle, DB2...)

« The last two are more Oracle specific and not as widely
published



SQL Manipulation and code injection

- SQL Manipulation
« By far the most common attack

« Modify variables passed to the WHERE clause of a
query to always return TRUE

« Usually accomplished by passing unexpected
characters that SQL interprets literally

« Code injection
« Involves executing multiple SQL statements at once

« MySQL natively supports this. Other databases
(Oracle) do not.



Simplified Web Application Architecture

Database Server

Web Server
Internal Network

DMZ Subnet

Three legged ﬁr'eal

Router to external network

-- Compliments of Wikipedia



Simplified Authentication Mechanism

 PHP accepts credentials from the user via POST
parameters

« Opens connection to MySQL

A SELECT statement attempts to match the input against
the database

- |f a match is found, the user is authenticated
* If not, the log in fails

10



Hands on

»  What might this look like in PHP?

» Looks great, except...

11



SQL Manipulation Example

- An attacker can pass SQL commands as input variables

 For example:
 |f the attacker set Username t0: admin' OR '1'="'1

e And password to: anything

« The SQL statement becomes:

SELECT * from auth WHERE user = 'admin' OR '1l'='1l’ AND
pass = 'anything'

« Admin is logged in without providing a password!

12



Code Injection Example

From the SQL Manipulation example:

SELECT * from auth WHERE user = 'Susername' OR pass
= 'Spassword'

Setusername=anything and password=blah' OR 'l'='1";
use mysgl; UPDATE user SET PASSWORD=password('blah')
where user='root'; FLUSH PRIVILEGES; use fruug;
SELECT * from auth where user='

The full query becomes:

select * from auth where user=‘anything’ and

pass="blah' OR '"1'='1"'; use mysqgl; UPDATE user SET
PASSWORD=password('blah') where user='root'; FLUSH
PRIVILEGES; use fruug; SELECT * from auth where
user="

We're off the hook - PHP's mysql_query() function does
not support this syntax

13



Input Exploits: Cross-site scripting

 Two general types of XSS:

» Reflected — Attack occurs when code is
returned from the server (search results, error
messages, etc)

- Persistent — data stored permanently, may
affect many users

14



Cross-site Scripting Example: Reflected

- A popular web site requiring user registration displays a
greeting with data from the URL query string to the user
* l.e., visiting
http://www.example.net/index.php?user=ben
results in “Welcome, ben” on the front page

« Attacker sends email to a user of example.com,
embedding javascript in the URL.:

e http://www.example.com/index.php?user=
<script>document.location="http://www.example.com

/cookie.cgi?' +alert('hahaha!')</script>

* Prays on the user’s legitimate trust for you SSL-protected
site

15



Cross-site Scripting Example: Persistent

« Consider a bulletin board application
« Users post “threads” for others to view

« The application stores authentication session
information in the cookie (a common practice)

« A malicious user includes the following text in his
post:

<script>document.location="http://www.example.c
om/cookie.cgi?' + alert('hahaha!')</script>

16



Agenda Summary

e Security Warm up

« Common input exploits

e Secure coding with input validation
e Self-assessment and testing

e Hot topics in application security

17



Secure Coding with Input Validation

« Defining input: All forms of input data to a program,
obtained from a user, another program, a database, or any

other external entity.

* Protecting against input attacks
- Validate all input

« Confirm data integrity
- Verify data “realism” (i.e. business rule correct)

18



Types of validation: Positive Validation

- Positive validation: Check for known good values.
« Characteristics:
» Reject all values that don’t meet tight constraints
Strongly typed
Length checked
Range check (if applicable)
Unsigned (if applicable)

 Pseudo-example: Accepting a social security number

unsigned int SSN = 0

If SSN != ~[0-9]{3}-[0-91{2}-[0-91{4}s
Then error “Sorry, this is not an SSN.”
Else

INSERT INTO c¢SSN wvalues SSNj;

19



Types of validation: Negative Validation

« Negative validation: Check for known bad values.
« Characteristics:
« Define and reject invalid data
« Requires never-ending maintenance of “bad” values

« Example:

unsigned int SSN = 0
Bad_ _values = “<’!12>"
If SSN contains Bad_values
Then error “Sorry, this i1s not an SSN.”
Else
INSERT INTO c¢cSSN values SSNj;

20



Types of validation: Sanitization

. Sanitizing{]data: Escape and translate data to safely capture and

process the input.

 Characteristics:
 Allow all data

« Use character encodings or escapes to “sanitize” potentially
harmful characters

* Requires care and feeding
 Example:

unsigned int SSN = 0

Bad_values = “<’12>"

If SSN contains Bad_values
Then SSN = sanitize (SSN)

INSERT INTO ¢SSN values SSN;

* In PHP, use addslashes|()

21



Securing our PHP application

- Positive Validation

# Allowing only alphanumerics and the underscore

# NOTE: No strong password support!

Spermit = '/"\w+S/"';

if (!preg_match( $permit, S$Susername)
| | !preg_match( Spermit, $password)) {
echo "Error: Only letters and numbers permitted.<br>";
exit;

« Sanitization
Susername = addslashes( $_POST['username'] );
Spassword = addslashes( $_POST['password'] );

22



Validation: Where to do it

 From the user’s perspective, client-side
validation is slickest

- Typically using javascript

« User doesn’t have a wait for a page reload/re-
render

« Unfortunately, attackers can bypass all client-
side validation

 So we mustdo it on the server
 Client-side validation is a second priority

- Always validate before the value is used

23



Agenda Summary

e Security Warm up

« Common input exploits

e Secure coding with input validation
e Self-assessment and testing

e Hot topics in application security

24



Assessment and Testing: Input Validation

« Parameter manipulation with a local proxy server

Proxy servers intercept request and forward it on behalf
of the client

Allows control over destination, content, etc.
Supported by all major browsers

A local proxy allows the developer to view raw requests,
manipulate HTTP requests, and more

« Automated testing

Fuzzing is providing randomized input, or fuzz, to an
application

Using a preset rules database, thousands of inputs can
be tested at a time

Warning: Only use in development or test environments!

25



Proxy servers

« What is a proxy server?

« “Site” proxies are commonly used to filter and control
web traffic

 All outgoing traffic to port 80 and/or 443 can be
forwarded to the site proxy

« Squid, bluecoat, etc do this
« What is a local proxy?

- Rather than a site-wide server that intercepts all HTTP
traffic, a local proxy is installed on YOUR desktop

 The web browser is pointed at the local proxy port (for
example, localhost port 8080)

« The local proxy server then receives all HTTP requests
and responses before they are sent to the server and
browser.

26



Popular local proxies

« Paros Proxy
« Simple to turn on/off request and response “trapping”
« Manipulating data is a piece of cake

« Has a spider to map the web site hierarchy for you
(with cookie support)

 Filter support
* Free!
« WebScarab
« Portable (Written in Java)
« SSL support

« Beanshell — arbitrarily complex Java request
manipulation

 Built-in parameter fuzzer

27



Input Fuzzing

- Relatively recent tool for testing application security
- Can test any type of input!
* Network protocols
 URL parameters
« HTML form inputs
* Lots of frameworks out there! Such as:
- SPIKE Proxy
« WebScarab
« Peach fuzz
« Many are incomplete, complex, or abandoned

28



Input fuzzing with WebScarab

 WebScarab fuzzes parameters, defined as:

« Part of a path. Ex: www.example.com/some_path
(some_path= path parameter)

« URL Query parameter. Ex:
http://example.com/index.html?username=admin
(username)

« Cookie parameter Ex: Cookie: lang=en-us;
ADMIN=no; y=1 ; time=10:30GMT ;
(All of lang, ADMIN, y, and time)

 POST parameters. Any HTML form that POSTs input

(content-type must be set to application/x-www-form-
urlencoded, which is most forms)

29



Hands On

« Testing with Microsoft Fiddler
 Input fuzzing with SPIKE Proxy

30



Agenda Summary

e Security Warm up

« Common input exploits

e Secure coding with input validation
e Self-assessment and testing

e Hot topics in application security

31



Accepting Incoming Email

« Spammers (and other attackers) are actively harvesting
email addresses from web pages

e Many automated tools to scan a site and report mailto:
links

e So, we pretty much have to stop using them

« Replace all mailto: links with form-based mail submission
forms

e Of course, be sure the form submission application is
secure

o Almost always, this means something needs to be
hardcoded

o Usually this is the “to” address... sometimes the
message

32



Preventing Automatic Form Submission

e Automated form submission has brought spam to the web!

« There are many tools in our arsenal, but they are a wonderful
example of trading convenience for security

The last thing we want to do is make it too hard for people
to use our web form!

However, form spam can bury useful communications
anyway

In some cases legislation regulates what we can use (Section
508 in the US Rehabilitation Act)

33



Preventing Automatic Form Submission

Some solutions:

CAPTCHA: Completely
Automated Public Turing
test to tell Computers
and Humans Apart

KittenAuth/HumanAuth
Sessions

JavaScript

Style Sheets

Key Words

Some issues:

User acceptance

Section 508
compliance

False positives

e Server load

Client compatibility

34



Web 2.0 Security

« The same security vulnerabilities and controls apply to AJAX
sites

« However, AJAX often requires additional or stronger controls
because they are usually complex, bidirectional, and
asynchronous

« AJAX applications often have weak authentication, session
management, and error handling

35



AJAX Injection

e« The heart of AJAX is the XMLHttpRequest

e Allows for asynchronous server communications and
browser updates

e (Originally developed by Microsoft!)

« The browser can be updated with just simple HTML (DOM),
XML, or another structured data format

« These XMLHttpRequest calls are just normal HTTP requests

e They require all the same authentication and session
management controls normal HTTP requests do

e That’s right, must authenticate EVERY request!

36



That's All, Folks

Thanks!

Ben Whaley
Applied Trust Engineering
Ben at atrust dot com

Applied Trust is hiring!

Visit our jobs page:
http://www.atrust.com/company/jobs

37



