
1© Applied Trust Engineering, 2007

Web Application Security

Front Range Unix Users’ Group

Ben Whaley

November 15, 2007

2© Applied Trust Engineering, 2007

Agenda Summary

• Security Warm up

• Common input exploits

• Secure coding with input validation

• Self-assessment and testing

... if time permits ...

• Hot topics in application security

3© Applied Trust Engineering, 2007

What is security?

• What is security?

• 3 risks and 3 priorities:

• Disclosure -> Confidentiality

• Corruption -> Integrity

• Unavailability -> Availability

• Multi-layered defense

• We have to deal with application and host
security

4© Applied Trust Engineering, 2007

Open Web Application Security Project

• The OWASP guide is the de-facto authoritative resource for
web application security

• For example, the PCI DSS standard requires that
applications are developed according to OWASP

• Too “loose” to be called a standard, but still a wonderful
resource

• Lots of resources:

• OWASP Guide

• Top 10 Lists

• WebGoat training application

• WebScarab

• …and more!

5© Applied Trust Engineering, 2007

Agenda Summary

• Security Warm up

• Common input exploits

• Secure coding with input validation

• Self-assessment and testing

• Hot topics in application security

6© Applied Trust Engineering, 2007

• External input to application may contain special
characters

• Various characters have special significance to the
database, or the web/application server, or perhaps the
OS

• Untrusted input can come from:

• URL parameters

• Form elements

• Cookies

• Database queries

• Other programs!

• AKA: Command injection

Input Exploits

7© Applied Trust Engineering, 2007

SQL Injection attacks: The Basics

• Four main types of attacks

• SQL manipulation

• Code Injection

• Function call injection

• Buffer overflows

• Most databases engines are susceptible to the first two
categories (MS SQL, MySQL , PostgreSQL, Oracle, DB2…) �� ��

• The last two are more Oracle specific and not as widely
published

8© Applied Trust Engineering, 2007

SQL Manipulation and code injection

• SQL Manipulation

• By far the most common attack

• Modify variables passed to the WHERE clause of a
query to always return TRUE

• Usually accomplished by passing unexpected
characters that SQL interprets literally

• Code injection

• Involves executing multiple SQL statements at once

• MySQL natively supports this. Other databases
(Oracle) do not.

9© Applied Trust Engineering, 2007

Simplified Web Application Architecture

Database Server

Web Server

-- Compliments of Wikipedia

10© Applied Trust Engineering, 2007

Simplified Authentication Mechanism

• PHP accepts credentials from the user via POST
parameters

• Opens connection to MySQL

• A SELECT statement attempts to match the input against
the database

• If a match is found, the user is authenticated

• If not, the log in fails

11© Applied Trust Engineering, 2007

Hands on

• What might this look like in PHP?

• Looks great, except...

12© Applied Trust Engineering, 2007

SQL Manipulation Example

• An attacker can pass SQL commands as input variables

• For example:

• If the attacker set Username to: admin' OR '1'='1

• And password to: anything

• The SQL statement becomes:

SELECT * from auth WHERE user = 'admin' OR '1'='1’ AND
pass = 'anything'

• Admin is logged in without providing a password!

13© Applied Trust Engineering, 2007

Code Injection Example

• From the SQL Manipulation example:
SELECT * from auth WHERE user = '$username' OR pass

= '$password'

• Set username=anything and password=blah' OR '1'='1';

use mysql; UPDATE user SET PASSWORD=password('blah')

where user='root'; FLUSH PRIVILEGES; use fruug;

SELECT * from auth where user='

• The full query becomes:
select * from auth where user=‘anything’ and

pass='blah' OR '1'='1'; use mysql; UPDATE user SET

PASSWORD=password('blah') where user='root'; FLUSH

PRIVILEGES; use fruug; SELECT * from auth where

user='

• We're off the hook - PHP's mysql_query() function does
not support this syntax

14© Applied Trust Engineering, 2007

Input Exploits: Cross-site scripting

• Two general types of XSS:

• Reflected – Attack occurs when code is
returned from the server (search results, error
messages, etc) �� ��

• Persistent – data stored permanently, may
affect many users

15© Applied Trust Engineering, 2007

Cross-site Scripting Example: Reflected

• A popular web site requiring user registration displays a
greeting with data from the URL query string to the user

• i.e., visiting
http://www.example.net/index.php?user=ben

results in “Welcome, ben” on the front page

• Attacker sends email to a user of example.com,
embedding javascript in the URL:
• http://www.example.com/index.php?user=

<script>document.location='http://www.example.com

/cookie.cgi?' +alert('hahaha!')</script>

• Prays on the user’s legitimate trust for you SSL-protected
site

16© Applied Trust Engineering, 2007

• Consider a bulletin board application

• Users post “threads” for others to view

• The application stores authentication session
information in the cookie (a common practice) �� ��

• A malicious user includes the following text in his
post:
<script>document.location='http://www.example.c

om/cookie.cgi?' + alert('hahaha!')</script>

Cross-site Scripting Example: Persistent

17© Applied Trust Engineering, 2007

Agenda Summary

• Security Warm up

• Common input exploits

• Secure coding with input validation

• Self-assessment and testing

• Hot topics in application security

18© Applied Trust Engineering, 2007

Secure Coding with Input Validation

• Defining input: All forms of input data to a program,
obtained from a user, another program, a database, or any
other external entity.

• Protecting against input attacks

• Validate all input

• Confirm data integrity

• Verify data “realism” (i.e. business rule correct) �� ��

19© Applied Trust Engineering, 2007

Types of validation: Positive Validation

• Positive validation: Check for known good values.

• Characteristics:

• Reject all values that don’t meet tight constraints

• Strongly typed

• Length checked
• Range check (if applicable)�

• Unsigned (if applicable)�

• Pseudo-example: Accepting a social security number

unsigned int SSN = 0

If SSN != ^[0-9]{3}-[0-9]{2}-[0-9]{4}$

Then error “Sorry, this is not an SSN.”

Else

INSERT INTO cSSN values SSN;

20© Applied Trust Engineering, 2007

Types of validation: Negative Validation

• Negative validation: Check for known bad values.

• Characteristics:
• Define and reject invalid data

• Requires never-ending maintenance of “bad” values

• Example:

unsigned int SSN = 0

Bad_values = “<‘!?>”

If SSN contains Bad_values

Then error “Sorry, this is not an SSN.”

Else

INSERT INTO cSSN values SSN;

21© Applied Trust Engineering, 2007

Types of validation: Sanitization

• Sanitizing data: Escape and translate data to safely capture and
process the input.

• Characteristics:
• Allow all data
• Use character encodings or escapes to “sanitize” potentially

harmful characters
• Requires care and feeding

• Example:

unsigned int SSN = 0

Bad_values = “<‘!?>”

If SSN contains Bad_values

Then SSN = sanitize(SSN)�

INSERT INTO cSSN values SSN;

• In PHP, use addslashes() �� ��

22© Applied Trust Engineering, 2007

Securing our PHP application

• Positive Validation
Allowing only alphanumerics and the underscore

NOTE: No strong password support!

$permit = '/^\w+$/';

if (!preg_match($permit, $username)

|| !preg_match($permit, $password)) {

echo "Error: Only letters and numbers permitted.
";

exit;

}

• Sanitization
$username = addslashes($_POST['username']);

$password = addslashes($_POST['password']);

23© Applied Trust Engineering, 2007

Validation: Where to do it

• From the user’s perspective, client-side
validation is slickest

• Typically using javascript

• User doesn’t have a wait for a page reload/re-
render

• Unfortunately, attackers can bypass all client-
side validation

• So we must do it on the server

• Client-side validation is a second priority

• Always validate before the value is used

24© Applied Trust Engineering, 2007

Agenda Summary

• Security Warm up

• Common input exploits

• Secure coding with input validation

• Self-assessment and testing

• Hot topics in application security

25© Applied Trust Engineering, 2007

Assessment and Testing: Input Validation

• Parameter manipulation with a local proxy server

• Proxy servers intercept request and forward it on behalf
of the client

• Allows control over destination, content, etc.

• Supported by all major browsers

• A local proxy allows the developer to view raw requests,
manipulate HTTP requests, and more

• Automated testing

• Fuzzing is providing randomized input, or fuzz, to an
application

• Using a preset rules database, thousands of inputs can
be tested at a time

• Warning: Only use in development or test environments!

26© Applied Trust Engineering, 2007

Proxy servers

• What is a proxy server?

• “Site” proxies are commonly used to filter and control
web traffic

• All outgoing traffic to port 80 and/or 443 can be
forwarded to the site proxy

• Squid, bluecoat, etc do this

• What is a local proxy?

• Rather than a site-wide server that intercepts all HTTP
traffic, a local proxy is installed on YOUR desktop

• The web browser is pointed at the local proxy port (for
example, localhost port 8080) �� ��

• The local proxy server then receives all HTTP requests
and responses before they are sent to the server and
browser.

27© Applied Trust Engineering, 2007

Popular local proxies

• Paros Proxy

• Simple to turn on/off request and response “trapping”

• Manipulating data is a piece of cake

• Has a spider to map the web site hierarchy for you
(with cookie support) �� ��

• Filter support

• Free!

• WebScarab

• Portable (Written in Java) �� ��

• SSL support

• Beanshell – arbitrarily complex Java request
manipulation

• Built-in parameter fuzzer

28© Applied Trust Engineering, 2007

Input Fuzzing

• Relatively recent tool for testing application security

• Can test any type of input!

• Network protocols

• URL parameters

• HTML form inputs

• …

• Lots of frameworks out there! Such as:

• SPIKE Proxy

• WebScarab

• Peach fuzz

• Many are incomplete, complex, or abandoned

29© Applied Trust Engineering, 2007

Input fuzzing with WebScarab

• WebScarab fuzzes parameters, defined as:

• Part of a path. Ex: www.example.com/some_path
(some_path= path parameter) �� ��

• URL Query parameter. Ex:
http://example.com/index.html?username=admin
(username) �� ��

• Cookie parameter Ex: Cookie: lang=en-us;
ADMIN=no; y=1 ; time=10:30GMT ;

(All of lang, ADMIN, y, and time) �� ��

• POST parameters. Any HTML form that POSTs input
(content-type must be set to application/x-www-form-
urlencoded, which is most forms) �� ��

30© Applied Trust Engineering, 2007

Hands On

• Testing with Microsoft Fiddler

• Input fuzzing with SPIKE Proxy

31© Applied Trust Engineering, 2007

Agenda Summary

• Security Warm up

• Common input exploits

• Secure coding with input validation

• Self-assessment and testing

• Hot topics in application security

32© Applied Trust Engineering, 2007

Accepting Incoming Email

• Spammers (and other attackers) are actively harvesting
email addresses from web pages

• Many automated tools to scan a site and report mailto:
links

• So, we pretty much have to stop using them

• Replace all mailto: links with form-based mail submission
forms

• Of course, be sure the form submission application is
secure

• Almost always, this means something needs to be
hardcoded

• Usually this is the “to” address… sometimes the
message

33© Applied Trust Engineering, 2007

Preventing Automatic Form Submission

• Automated form submission has brought spam to the web!

• There are many tools in our arsenal, but they are a wonderful
example of trading convenience for security

• The last thing we want to do is make it too hard for people
to use our web form!

• However, form spam can bury useful communications
anyway

• In some cases legislation regulates what we can use (Section
508 in the US Rehabilitation Act) �� ��

34© Applied Trust Engineering, 2007

Preventing Automatic Form Submission

• Some solutions:

• CAPTCHA: Completely
Automated Public Turing
test to tell Computers
and Humans Apart

• KittenAuth/HumanAuth

• Sessions

• JavaScript

• Style Sheets

• Key Words

• Some issues:

• User acceptance

• Section 508
compliance

• False positives

• Server load

• Client compatibility

35© Applied Trust Engineering, 2007

Web 2.0 Security

• The same security vulnerabilities and controls apply to AJAX
sites

• However, AJAX often requires additional or stronger controls
because they are usually complex, bidirectional, and
asynchronous

• AJAX applications often have weak authentication, session
management, and error handling

36© Applied Trust Engineering, 2007

AJAX Injection

• The heart of AJAX is the XMLHttpRequest

• Allows for asynchronous server communications and
browser updates

• (Originally developed by Microsoft!) �� ��

• The browser can be updated with just simple HTML (DOM),
XML, or another structured data format

• These XMLHttpRequest calls are just normal HTTP requests

• They require all the same authentication and session
management controls normal HTTP requests do

• That’s right, must authenticate EVERY request!

37© Applied Trust Engineering, 2007

That's All, Folks

Thanks!

Ben Whaley

Applied Trust Engineering

Ben at atrust dot com

Applied Trust is hiring!

Visit our jobs page:

http://www.atrust.com/company/jobs

