

Solaris and Xen

Stuart Maybee

stuart.maybee@sun.com Solaris Kernel Engineering

Overview

- Hypervisors 101
- Paravirtualization vs unmodified OS
- About Xen
- Performance
- Migration
- Solaris on Xen
- Xen and Zones

Hypervisors 101

- Provides a "Virtual Machine"
- Not new VM/370 over 30 yrs ago
- Controls hardware memory/cpu/io devices
- Schedules cpus/memory/io rate
- May emulate real devices
- For x86/x86-64 multiple choices available:
 - > Xen
 - > VMware
 - MSFT Virtual Server
 - > others

Para vs Full virtualization

- Full virtualization:
 - > Runs binary image of "metal" OS
 - > Must emulate real i/o devices
 - Can be slow/need help from hardware
 - May use trap and emulate or rewriting
- Para-virtualizattion:
 - > Runs OS ported to special arch
 - > Uses generic "virtual" device drivers
 - Can be more efficient since it is hypervisor aware

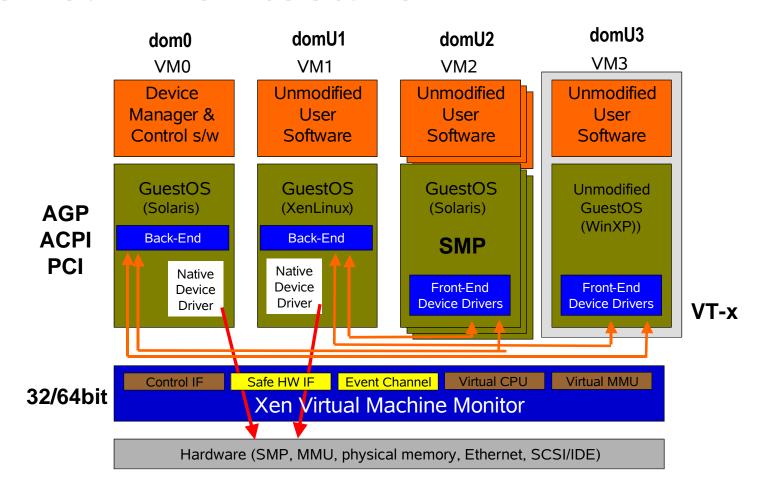
Xen

 Open source hypervisor technology developed at the University of Cambridge

http://www.cl.cam.ac.uk/Research/SRG/netos/xen/http://www.opensolaris.org/os/community/xen

- 2006: Hardware Virtualization Everywhere
 - x64 cpu capabilities (VT-x, Pacifica)
 - Workload consolidation
 - Community software wanted!

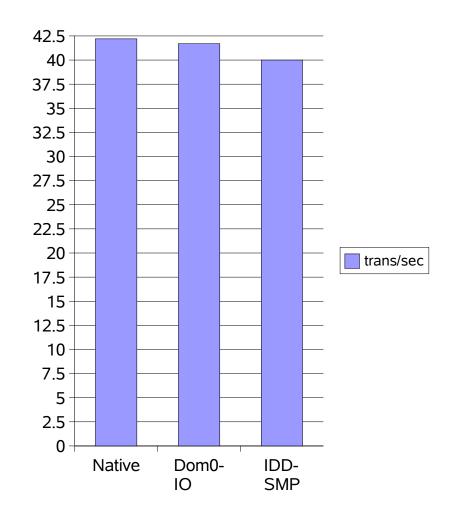
"Every grad student will have their own hypervisor"



Xen's Design Principals and Goals

- Existing applications and binaries must run unmodified
- Support for multi-process, multi-application application environments
 - Permit complex server configurations to be virtualized within a single guest OS instance
- Paravirtualization enables high performance and strong isolation between domains
 - > Particularly on uncooperative architectures (x86)
- Support up to 100 active VM instances on modern servers
- Live migration of VM instances between servers

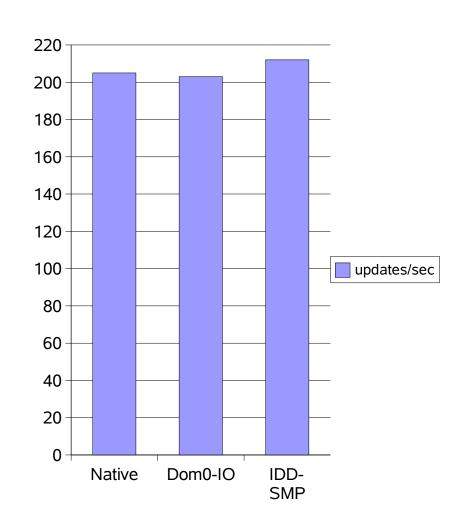
Xen 3.x Architecture


Key Capabilities

- Checkpoint/Restart and Live Migration
 - N1 provisioning
 - Grid operations: virtual platform
- Multiple OSes running simultaneously
 - Linux, Solaris, Windows XP
 - No longer a boot-time decision
- Special purpose kernels
 - Drivers, filesystems

Performance - Postmark

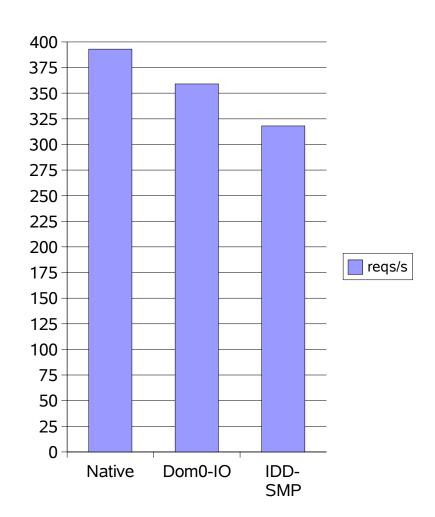
- Emulates workload of mail server
- Number of transactions/second.
- 1% Dom0 I/O
- 5% IDD



Performance - OLTP

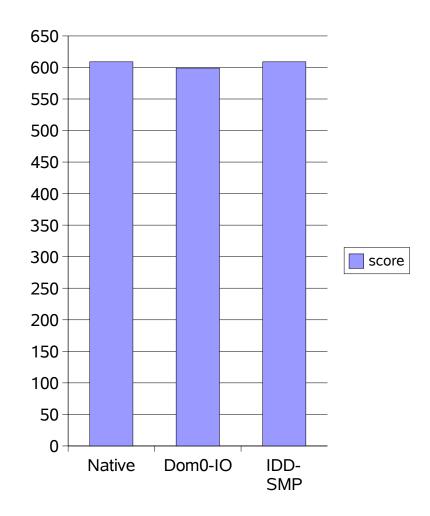
OSDB/OLTP

- PostgresSQL 7.3.2
- Both Data Mining & OLTP access patterns
- No measurable impact on DM access (readonly)
- IDD outperforms native (non-Xen) OS

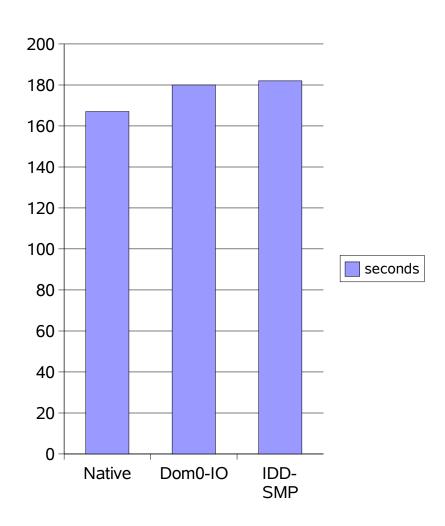


Performance - httperf

httperf-0.8

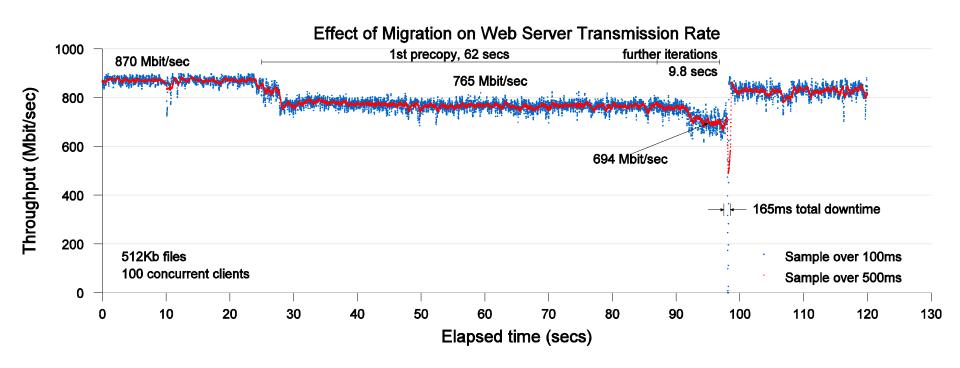

- Apache server
- 200Mb/s server

Performance – Spec WEB 99


 Benchmark score reflects QoS supplied by webserver

Impact On Performance

OS Build Time


OS Migration Experiment, 2004

- Two machines running Xen 2.0
 - 2GHz Hyperthreaded CPUs
 - 1Gbit Ethernet
 - Remote storage
 - XenoLinux
- SPECweb99 benchmark
 - 800Mbyte domU, 90% CPU utilization

Now, move workload from machine A to machine B ...

SPECweb99 Migration Experiment

From LinuxWorld 2005 Virtualization BoF

Solaris Xen Port

- "Platform" rather than "arch" port
- Wrote generic virtual device drivers
 - Net
 - Disk
 - Console
- Support Xen "event" interrupt model
- HAT layer changes for TLB/page table management
- Replace priviliged instructions with hypervisor calls

Xen and Sun - Opportunities

- "Deep-frozen" solution stacks
 - · Preconfigured, suspended, ready-to-resume
- Embedded Stacks
 - Driver domains
 - Network switch
 - domU JavaOS
- Grid computing
 - "Internet Suspend/Resume"
- Massive Vertical Scale
 - Reliability

Xen and Sun – How to Play?

- Participate in Xen community
 - Fix bugs, improve stability and portability
- Innovate in Solaris-on-Xen
 - Fault Management, Observability
 - Performance, Scaling
 - Networking, Security, Manageability
- Manage Xen-based domains
 - N1P1

Solaris on Xen - Status

April 20, 2006

- In the lab in various states of functionality:
 - > 32-bit Solaris dom0, mp domU
 - > 64-bit versions of the same
 - Currently Based on Xen 3.0.2 Solaris Nevada build 31 soon to move to Nevada 38
 - > Will show up on OpenSolaris when ready
- Solaris Nevada build 31 on Xen 3.0
 - > 32-bit, domU, uniprocessor
 - > Available now for download from OpenSolaris

Solaris Zones and Xen

- Zones
 - Scalable, fast, virtual platform, sparc & x64
 - · Emphasis on sharing, simpler admin
 - Improved fault isolation over "single system."
 - Alternate brands
- Xen (hardware virtualization)
 - Familiar admin model
 - Emphasis on separation
 - Better performance isolation
 - Better fault isolation, SPOFs remain

Solaris Zones and Xen (continued)

- Complementary, not alternatives
 - Use one, the other, or both
- Key differentiators for HW virtualization
 - Different OSes on same machine
 - Different patch levels on same machine
 - Suspend/Resume, and Live Migration
- Technology Lifecycle
 - Zones nearly two years old via Solaris Express, mission-critical deployment >today
 - Xen still being created, will take some time to mature

Summary

- Xen with Solaris...
 - provides new capabilities from a new virtualization layer
 - is a work-in-progress
 - · will further commoditize HW virtualization

Questions?

OpenSolaris on Xen Community

- Just getting going:
 - Email, blogs, FAQs
- Find it at:

http://www.opensolaris.org/os/community/xen

- Plan
 - Develop Solaris-on-Xen in public view
 - Release ON codebase for port asap
 - Track OpenSolaris SCM tool(s)
- Details
 - NV b31 (and later) domU and dom0 plus patches for Xen 3.x