
Instrumenting and Tuning
A Very High Performance

Web Server

Douglas L. Urner
Berkeley Software Design, Inc.

<dlu@bsdi.com>
www.bsdi.com

DLU − web.00 Jun 8, 1997BSD
BERKELEY SOFTWARE DESIGN, INC.

Page 1

Overview

• What’s the real problem?

• Benchmarks for web traffic

• Tuning your web server for high performance

• Tuning your content for ‘fast appearance’

• Really big sites

• Futures

DLU − web.01 Jun 8, 1997

Page 2

What Is a Busy Web Site Today?

• Over one million hits per hour

• T3 − 44.7 million bps
Not a skinny little T-1 (@ 1.54 million bps)
Multiple T-3s at big sites

• Every bit of performance counts at 40+ million
hits/day

• Keys:
Efficient software
Fast hardware
Optimal Configuration

DLU − web.02 Jun 8, 1997

Page 3

Measuring HTTP Performance

• Important: Web performance → Web usability

• Hype and confusion abound

• Big bucks are at stake

• It’s challenging:
Lots of variables
Only a few in your control
Large networks hard (and costly) to simulate
Web performance is often very subjective

DLU − web.03 Jun 8, 1997

Page 4



Qualities of a Good Performance Metric

• Easy to measure in the lab

• Relevant to real world experience

• Comprehensible

• Good metric embraces:
Network performance
Software performance
Hardware performance
Client Load

DLU − web.04 Jun 8, 1997

Page 5

HTTP Benchmarks: WebStone

• First commonly used HTTP benchmark

• Developed by SGI

• Many versions, loosely defined loads and run
procedures

• Difficult to compare results

• Can be tailored to your environment

• Available:
http://www.sgi.com/Products/WebFORCE/WebStone/

DLU − web.05 Jun 8, 1997

Page 6

HTTP Benchmarks: SPECweb96

• Commercial ‘‘standard’’ HTTP benchmark

• Developed by many, including: DEC, Hewlett-
Packard, IBM, Intel, Netscape, OpenMarket, Silicon
Graphics, and Sun

• Not yet widely used

• Well defined loads and run procedures ease
comparison of results

• Hard to use as a universal tool for tuning your site
because of its model

• Available: http://www.specbench.org/osg/web96/

DLU − web.06 Jun 8, 1997

Page 7

Typical Benchmark Statistics

• Connections per second: average number of client
connections per second accepted by the server

• Latency: average time to complete a request

• Throughput: average aggregate data rate to the net

• Error Rate: typically the rate of "connection
refused" errors

DLU − web.07 Jun 8, 1997

Page 8



Performance Measurement Challenges

• Standardization
How does your environment compare to the
standard?
Can different environments be compared?

• ‘‘Metric Inflation’’

• Optimization for very special cases that happen to
occur in benchmarks

DLU − web.08 Jun 8, 1997

Page 9

The Basic Plan

1) Derive realistic expectations (e.g., 10 Mbit for
ethernet)

2) Investigate actual behavior

3) Identify bottlenecks

4) Fix bottleneck and repeat

DLU − web.09 Jun 8, 1997

Page 10

Setting Expectations

• Determine overall performance from system
components:

Theoretical Network Bandwidth
Theoretical Disk Performance
Relative Processor Speed
Learn everything about: hardware, software,
protocols, diagnostics, environment,
performance claims, etc.

• Sets basic strategy

• Look out for hunches!

• Don’t set management or marketing expectations
yet!

DLU − web.10 Jun 8, 1997

Page 11

Expectations, Part 2

• More parameters:
TCP/IP protocol stack performance
File system software performance
HTTP protocol performance

• Sometimes these can measured in isolation

• Gain insight into performance limits

DLU − web.11 Jun 8, 1997

Page 12



Investigate Actual Behavior

• Plan tests that will enable you to test your
performance expectations

• Monitor real statistics while tests are running
Observe many parameters
Vary load

• vmstat − virtual memory statics

• iostat − device I/O statistics

• netstat − network statistics

DLU − web.12 Jun 8, 1997

Page 13

Investigation, Part 2

• Look out for surprises! Use your eyes and your
ears!

Unexpected disk activity (caches aren’t working)
Low network traffic (why?)
Low CPU usage (why?)
Anything that’s too good to be true

• Good tools:
tcpdump
ktrace

DLU − web.13 Jun 8, 1997

Page 14

Identify the Bottleneck

• What factor most limits system performance?

• Use top(1) to identify CPU consumption

• Use profiling to identify hot spots in user code and
kernel

• Use perl(1) to simplify and summarize raw data (it
can print postscript!)

• Ensure your test configuration can drive the test
system to full load

DLU − web.14 Jun 8, 1997

Page 15

Fix a Bottleneck and Repeat

• Fix one bottleneck at a time!

• Go for ‘‘low hanging fruit’’
Get the system configuration right
Get the architecture right
Tune the application (user) code
Tune the kernel

• Removing one bottleneck creates a new one

• Typical bottleneck removal:
Add memory if paging
Reduce disk activity: use multiple spindles
and/or multiple controllers
Reduce network traffic and contention: local DNS
cache, split traffic to another net

DLU − web.15 Jun 8, 1997

Page 16



Case Study

• Early 1996 industry claims:
30 to 60 connections/second were good
10,000 connections/hour caused stress
Super Bowl ad for DEC touted 100,000 (or so?)
connections per day

• 2/96: BSDI chose high WWW performance as
corporate goal

• BSDI used reference platform of:
133 MHz P5
64 MB of RAM
Single SCSI disk
100 Mbps Ethernet
High performance WWW S/W − no special
caching

DLU − web.16 Jun 8, 1997

Page 17

Real Life: Initial Results

• Server CPU bound
10% user time and 90% system time
3700 open network connections, most in
TIME_WAIT.

• First round of tuning:
maxusers → 128
Confirm hardware configuration ok
Gather vmstat and netstat info running
benchmark under load

• Results (64 clients):
55 cps (connections/second)
1.2 sec average latency
3.4 Mbps throughput

DLU − web.17 Jun 8, 1997

Page 18

Real Life: Round Two

• Bottleneck had to be in the kernel
We knew it was connection lookup searching
(kernel)
Fixed the searching

• Results with 64 clients:
185 cps
0.3 sec latency
11.4 Mbps
3-4x improvement!

• Observations:
Server still CPU bound; 40% user, 60% system
10000 open network connections, most in
TIME_WAIT

DLU − web.18 Jun 8, 1997

Page 19

Real Life: Round Three

• Chose to profile the kernel
Two modules (tcp_slowtimeo and tcp_fasttimeo)
were candidates for improvement
Fixed them

• Results (with 64 clients):
191 cps
0.3 sec latency
11.7 Mbps
Little improvement! Oops!

• Server still CPU bound with approximately 60%
system time

DLU − web.19 Jun 8, 1997

Page 20



Real Life: Round Four

• Tuned Apache Web server
Turn off DNS lookups (HostnameLookups off)
Increased server lifetime (MaxRequestsPerChild
0)
Remove checks for .htaccess file (AllowOverride
None)

• Results (with 64 clients):
248 cps
0.2 sec latency
15.2 Mbps
30% improvement!

• System time reduced to 40-50%

DLU − web.20 Jun 8, 1997

Page 21

Real Life: Round Five

• Overall performance is pretty good

• Low end latency high

• Optimized Nagle algorithm for HTTP (‘‘TCP slow
start’’)

• Results (with 64 clients):
255 cps
0.2 sec latency
15.6 Mbps
Little improvement (except for low end)

DLU − web.21 Jun 8, 1997

Page 22

Real Life: Round Six

• Install Squid caching HTTP proxy

• Results (with 64 clients):
326 cps
0.2 sec latency
17.7 Mbps
15-28% improvement

• Reduced context switching I/O for static content

DLU − web.22 Jun 8, 1997

Page 23

Real Life: Round Seven

• Increased processor to 200 MHz Pentium Pro

• Results (with 16 clients):
544 cps
0.03 sec latency
29.0 Mbps
65% improvement (except latency: 6x)

• Still CPU bound, but latencies are lower and
throughput is up

• [Ran out of clients’ CPU power]

• Time to stop: 47,000,000 hits/day!

DLU − web.23 Jun 8, 1997

Page 24



What We Accomplished

• Careful tuning achieved huge HTTP throughput
improvement

• TCP speedup summary:
Hashed connection lookup
More efficient timer management
Faster connection establishment
Improved packetization

• HTTP server tuning:
Disable hostname lookups
Eliminate unnecessary forking
Eliminate unnecessary directory searches

DLU − web.24 Jun 8, 1997

Page 25

Lies, Damn Lies, and Benchmarks

• Actual Speed vs. Apparent Speed
Actual speed − what we’ve been talking about;
pumping out more bits, faster
Apparent Speed − Minimizing the delay (latency)
before content starts to appear

• Smart design and coding of content (improves
apparent speed)

Caches are your friends (improve actual speed)

DLU − web.25 Jun 8, 1997

Page 26

Designing for Speed

• Help out the browser

• Use dynamic content carefully

• Maximize cachable content

• Be sparing in use of ‘cookies’

• Generate useful headers

DLU − web.26 Jun 8, 1997

Page 27

When One Server Won’t Do

• Round Robin DNS

• Clusters
BIG/ip
HydraWEB
LocalDirector

DLU − web.27 Jun 8, 1997

Page 28



What’s Next?

• More and more dynamic content

• Client and server side Java

• WebNFS

DLU − web.28 Jun 8, 1997

Page 29

Summary

• Take the time to understand the problem
(or find somebody who does)

• Test (and measure) methodically

• Design your content for fast delivery

• World class performance with ‘‘PC’’ hardware
(using BSDI, of course)

DLU − web.29 Jun 8, 1997

Page 30

Further Reading

• Operating System Benchmarking in the Wake of
Lmbench: A Case Study of the Performance of
NetBSD on the Intel x86 Architecture, Aaron Brown
and Margo Seltzer.
http://www.eecs.harvard.edu/vino/perf/hbench.htm

• The Usenet comp.benchmarks FAQ and more:
ftp://rtfm.mit.edu/pub/usenet/comp.benchmarks

• The Bandwidth Conservation Society has good tips:
http://www.infohiway.com/faster/

DLU − web.30 Jun 8, 1997

Page 31


