Instrumenting and Tuning
A Very High Performance
Web Server

Douglas L. Urner
Berkeley Software Design, Inc.
<dlu@bsdi.com>
www.bsdi.com

'BERKELEY SOFTWARE DESIGN, INC.

Jing, \997-/

Page 1

Overview
® What’s the real problem?
® Benchmarks for web traffic
® Tuning your web server for high performance
® Tuning your content for ‘fast appearance’
® Really big sites

® Futures

DLU —

Jun, |~797-/

Page 2

What Is a Busy Web Site Today?
® Over one million hits per hour

©® T3 - 44.7 million bps
0 Not a skinny little T-1 (@ 1.54 million bps)
O Multiple T-3s at big sites

® Every bit of performance counts at 40+ million
hits/day

©® Keys:
o Efficient software
o Fast hardware
o Optimal Configuration

Jun, \997-/

Page 3

Measuring HTTP Performance
® Important: Web performance — Web usability
® Hype and confusion abound
® Big bucks are at stake
® It’s challenging:
O Lots of variables
o Only a few in your control

o Large networks hard (and costly) to simulate
o0 Web performance is often very subjective

DLU —

Jun8, ww-/

Page 4

-

Qualities of a Good Performance Metric
©® Easy to measure in the lab
©® Relevant to real world experience
©® Comprehensible
©® Good metric embraces:
O Network performance
o Software performance

o Hardware performance
o Client Load

\ . o

Page 5

HTTP Benchmarks: WebStone
® First commonly used HTTP benchmark
® Developed by SGI

® Many versions, loosely defined loads and run
procedures

o Difficult to compare results
® Can be tailored to your environment

® Available:
http://www.sgi.com/Products/WebFORCE/WebStone/

DLU — Jun8, |~797-/

Page 6

HTTP Benchmarks: SPECweb96
® Commercial “standard” HTTP benchmark
® Developed by many, including: DEC, Hewlett-
Packard, IBM, Intel, Netscape, OpenMarket, Silicon
Graphics, and Sun
©® Not yet widely used

©® Well defined loads and run procedures ease
comparison of results

® Hard to use as a universal tool for tuning your site
because of its model

® Available: http://www.spechench.org/osg/web96/

_ . i

Page 7

Typical Benchmark Statistics

® Connections per second: average number of client
connections per second accepted by the server

® Latency: average time to complete a request
® Throughput: average aggregate data rate to the net

® Error Rate: typically the rate of "connection
refused" errors

~

DU — Jin8, ww-/

Page 8

-

Performance Measurement Challenges

o Standardization
O How does your environment compare to the
standard?
o Can different environments be compared?

® ‘“Metric Inflation”

©® Optimization for very special cases that happen to
occur in benchmarks

Jing, \997-/

Page 9

The Basic Plan

1) Derive realistic expectations (e.g., 10 Mbit for
ethernet)

2) Investigate actual behavior
3) Identify bottlenecks
4) Fix bottleneck and repeat

K DLU —

Jun, |~797-/

Page 10

Setting Expectations

©® Determine overall performance from system
components:

o Theoretical Network Bandwidth

o Theoretical Disk Performance

o Relative Processor Speed

O Learn everything about: hardware, software,
protocols, diagnostics, environment,
performance claims, etc.

® Sets basic strategy
® Look out for hunches!

° DotI:’t set management or marketing expectations
yet!

K U — web,

Jun, \997-/

Page 11

-

Expectations, Part 2
® More parameters:
o TCP/IP protocol stack performance
o File system software performance
o HTTP protocol performance
©® Sometimes these can measured in isolation

® Gain insight into performance limits

K DLU — web.|

~

Jun8, ww-/

Page 12

Investigate Actual Behavior

® Plan tests that will enable you to test your
performance expectations

©® Monitor real statistics while tests are running
o Observe many parameters
o Vary load

©® vmstat - virtual memory statics

® jostat — device 1/0 statistics

©® petstat — network statistics

Jing, \997-/

Page 13

-

Investigation, Part 2

° Look' out for surprises! Use your eyes and your
ears!
o Unexpected disk activity (caches aren’t working)
o Low network traffic (why?)
o Low CPU usage (why?)
O Anything that’s too good to be true

® Good tools:
o tepdump
o ktrace

~

DLU — web. Jun8, |~797-/

Page 14

Identify the Bottleneck
©® What factor most limits system performance?
o Use top(1) to identify CPU consumption

® Use profiling to identify hot spots in user code and
kernel

® Use perl(1) to simplify and summarize raw data (it
can print postscript!)

©® Ensure your test configuration can drive the test
system to full load

~

Jun, \997-/

Page 15

_

Fix a Bottleneck and Repeat

® Fix one hottleneck at a time!

® Go for “low hanging fruit”
o Get the system configuration right
o Get the architecture right
o Tune the application (user) code
O Tune the kernel

©® Removing one bottleneck creates a new one

® Typical bottleneck removal:
o0 Add memory if paging
o Reduce disk activity: use multiple spindles
and/or multiple controllers
0 Reduce network traffic and contention: local DNS
cache, split traffic to another net

~

DLU — web. Jun8, ww-/

Page 16

_

Case Study

® Early 1996 industry claims:
0 30 to 60 connections/second were good
0 10,000 connections/hour caused stress
o Super Bowl ad for DEC touted 100,000 (or so?)
connections per day

© 2/96: BSDI chose high WWW performance as
corporate goal

© BSDI used reference platform of:
0 133 MHz P5
0 64 MB of RAM
o Single SCSI disk
0 100 Mbps Ethernet
o High performance WWW S/W - no special
caching

Jing, \997-/

Page 17

-

.

Real Life: Initial Results

® Server CPU bound
0 10% user time and 90% system time
0 3700 open network connections, most in
TIME_WAIT.

® First round of tuning:
O maxusers - 128
o Confirm hardware configuration ok
o Gather vmstat and netstat info running
benchmark under load

® Results (64 clients):
0 55 cps (connections/second)
0 1.2 sec average latency
0 3.4 Mbps throughput

Jun, |~797-/

DLU — web.|

Page 18

N

Real Life: Round Two

® Bottleneck had to be in the kernel
o We knew it was connection lookup searching
(kernel)
O Fixed the searching

©® Results with 64 clients:
o 185 cps
0 0.3 sec latency
0 11.4 Mbps
0 3-4x improvement!

® Observations:
o Server still CPU bound; 40% user, 60% system
0 10000 open network connections, most in
TIME_WAIT

Jun, \997-/

Page 19

-

_

~

Real Life: Round Three

® Chose to profile the kernel
o Two modules (tcp_slowtimeo and tcp_fasttimeo)
were candidates for improvement
O Fixed them

® Results (with 64 clients):
0 191 cps
0 0.3 sec latency
0 11.7 Mbps
o Little improvement! Oops!

® Server still CPU bound with approximately 60%
system time

DLU — web. Jun8, ww-/

Page 20

-

_

~

Real Life: Round Four

©® Tuned Apache Web server
O Turn off DNS lookups (HostnameLookups off)
o} :)ncreased server lifetime (MaxRequestsPerChild

o Remove checks for .htaccess file (AllowOverride
None)

® Results (with 64 clients):
0 248 cps
0 0.2 sec latency
0 15.2 Mbps
0 30% improvement!

® System time reduced to 40-50%

U — web. Jun8, \997-/

Page 21

Real Life: Round Five
® Overall performance is pretty good
® Low end latency high

® Optimized Nagle algorithm for HTTP (“TCP slow
start”)

® Results (with 64 clients):
0 255 ¢cps
0 0.2 sec latency
0 15.6 Mbps
o Little improvement (except for low end)

DLU — web.

Jun, |~797-/

Page 22

Real Life: Round Six
® Install Squid caching HTTP proxy

® Results (with 64 clients):
0 326 cps
0 0.2 sec latency
o0 17.7 Mbps
0 15-28% improvement

® Reduced context switching 1/0 for static content

U - web Jun, \997-/

Page 23

Real Life: Round Seven
® Increased processor to 200 MHz Pentium Pro

® Results (with 16 clients):
0 544 cps
0 0.03 sec latency
0 29.0 Mbps
0 65% improvement (except latency: 6x)

® Still CPU bound, but latencies are lower and
throughput is up

® [Ran out of clients’ CPU power]
® Time to stop: 47,000,000 hits/day!

DLU — web.

~

Jun8, ww-/

Page 24

What We Accomplished

® Careful tuning achieved huge HTTP throughput
improvement

©® TCP speedup summary:
o Hashed connection lookup
0 More efficient timer management
o Faster connection establishment
o Improved packetization

©® HTTP server tuning:
o Disable hostname lookups
o Eliminate unnecessary forking
o Eliminate unnecessary directory searches

Jing, \997-/

Page 25

-

~

Lies, Damn Lies, and Benchmarks

® Actual Speed vs. Apparent Speed
O Actual speed - what we’ve been talking about;
pumping out more bits, faster
o Apparent Speed — Minimizing the delay (latency)
before content starts to appear

® Smart design and coding of content (improves
apparent speed)

o Caches are your friends (improve actual speed)

DLU — web. Jun8, |~797-/

Page 26

Designing for Speed
® Help out the browser
® Use dynamic content carefully
©® Maximize cachable content
® Be sparing in use of ‘cookies’

® Generate useful headers

~

Jun, \997-/

Page 27

-

~

When One Server Won’t Do
©® Round Robin DNS

® Clusters
o BIG/ip
o HydraWEB
o LocalDirector

DLU — web. Jun8, ww-/

Page 28

-

What’s Next?
©® More and more dynamic content
® Client and server side Java

® WebNFS

\ U — web. Jun8, \997-/

Page 29

Summary

® Take the time to understand the problem
(or find somebody who does)

® Test (and measure) methodically
® Design your content for fast delivery

® World class performance with “PC” hardware
(using BSDI, of course)

DLU — web. Jun8, |~797-/

Page 30

Further Reading

® Operating System Benchmarking in the Wake of
Lmbench: A Case Study of the Performance of
NetBSD on the Intel x86 Architecture, Aaron Brown
and Margo Seltzer.
http://www.eecs.harvard.edu/vino/perf/hbench.htm

® The Usenet comp.benchmarks FAQ and more:
ftp://rtfm.mit.edu/pub/usenet/comp.benchmarks

® The Bandwidth Conservation Society has good tips:
http://www.infohiway.com/faster/

~

K U - web Jun, \997-/

Page 31

